

AWS CloudFormation & Terraform

When it comes to automating deployments on the Cloud, both AWS CloudFormation and

Terraform are excellent tools that each come with their own set of advantages.

CloudFormation, being AWS’s proprietary tool, is a natural go-to for AWS users looking to

rapidly deploy and automate their infrastructure on the Cloud. AWS’s preconfigured

CloudFormation stacks provide users with the ability to quickly and easily deploy their AWS

infrastructure with the click of a button.

However Terraform - an open-source infrastructure as code software tool created by HashiCorp

- is an equally desirable tool for companies requiring infrastructure automation. Terraform’s

open-source nature along with its wide user pool and complete ecosystem of products make it a

very appealing tool for companies that prioritize a certain measure of flexibility and control over

their cloud deployments.

“Many of TrackIt’s clients have standardized on Terraform for its broad coverage of services and

it’s broad open-source user community. TrackIt has extensive experience with both it and

CloudFormation and often will make a recommendation of one or the other.” - Brad Winett,

President, TrackIt

One of TrackIt’s customers had standardized on Terraform as its provisioning tool and wanted

TrackIt’s help in implementing AWS Media2Cloud using Terraform. There was no pre-existing

Terraform module that the TrackIt team could leverage to quickly implement Media2Cloud, so

TrackIt’s team translated the CloudFormation stack into Terraform modules itself.

This whitepaper describes our team’s approach to translating Media2Cloud CloudFormation

stacks into Terraform modules.

Preliminary Step: Cleaning Up the Folder & Splitting

the CloudFormation Stacks

The first step of the process was to clean up the deployment folder in the Media2Cloud

repository. We moved all the yaml files related to the CloudFormation stack into a separate

folder in order to follow Terraform best practices and to make it easier to maintain.

https://aws.amazon.com/cloudformation/
https://www.terraform.io/

Terraform Cloudformation

The next step of the process was to split each of the CloudFormation stacks into separate files

which would then be converted to Terraform modules.

Refactoring CloudFormation Stacks

One of the primary challenges during the translation was to find an equivalent for AWS

CloudFormation Custom Resources within Terraform. To address this issue, it was necessary

for us to properly understand what Custom Resources do; to summarize, they are used to call

Lambda functions at specific provisioning times.

A Custom Resource can be configured in the following manner in Terraform:

{

 "RequestType" : "Create",

 "ResponseURL" : "http://pre-signed-S3-url-for-response",

 "StackId" : "arn:aws:cloudformation:us-west-2:123456789012:stack/stack-

name/guid",

 "RequestId" : "unique id for this create request",

 "ResourceType" : "Custom::TestResource",

 "LogicalResourceId" : "MyTestResource",

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources.html

 "ResourceProperties" : {

 "Name" : "Value",

 "List" : ["1", "2", "3"]

 }

}

This JSON object triggers a specific Lambda function deployed by CloudFormation. The most

important part of the JSON object is the RequestType which informs the Lambda function what

“state” Terraform is in. (To learn more about states, please refer to the section below titled

“States”). For example, when the state is "Create", the Lambda function will know that the

infrastructure is being deployed. Another important property is ResourceProperties, which is

used to pass custom data to the Lambda function.

Terraform has a specific data source called "aws_lambda_invocation" which is used to trigger a

Lambda function. As you can see in the following snippets, we deployed the Lambda function

and used this data source to call the Lambda function at the creation of the infrastructure.

resource "aws_lambda_function" "custom_resource_function" {

 depends_on =

[aws_iam_role_policy_attachment.attach_custom_resource_execution_role_policy]

 function_name = "custom_resource_function"

 description = "(${local.solution.project.id}) custom resources"

 runtime = "nodejs10.x"

 memory_size = 128

 timeout = 900

 handler = "index.Run"

 role = aws_iam_role.custom_resource_execution_role.arn

 filename = module.source.custom_resources

}

Deploying the Lambda function

data "aws_lambda_invocation" "iot_url" {

 depends_on = [aws_lambda_function.custom_resource_function]

 function_name = aws_lambda_function.custom_resource_function.function_name

 input = <<JSON

 {

 "RequestType": "Create", // HERE

 "ResourceProperties": {

 "FunctionName": "IotEndpoint",

https://www.terraform.io/docs/providers/aws/d/lambda_invocation.html

 "ServiceToken": "${aws_lambda_function.custom_resource_function.arn}"

 }

 }

 JSON

}

Calling the Lambda function

resource "null_resource" "detach_iot" {

 depends_on = [aws_iot_policy.iot_thing_policy,

aws_lambda_function.custom_resource_function]

 triggers = {

 region = var.region

 function_name = aws_lambda_function.custom_resource_function.function_name

 service_token = aws_lambda_function.custom_resource_function.arn

 iot_policy = aws_iot_policy.iot_thing_policy.name

 }

 provisioner "local-exec" {

 when = destroy

 command = <<COMMAND

 aws lambda invoke \

 --cli-binary-format raw-in-base64-out \

 --log-type Tail \

 --region ${self.triggers.region} \

 --function-name ${self.triggers.function_name} \

 --payload '{

 "RequestType": "Delete",

 "ResourceProperties": {

 "FunctionName": "IotDetachPolices",

 "ServiceToken": "${self.triggers.service_token}",

 "IotThingPolicy": "${self.triggers.iot_policy}"

 }

 }' \

 delete-iot.json

 COMMAND

 }

}

Calling the Lambda function at destroy

By default, Terraform runs the data "aws_lambda_invocation" data source all the time, but we

wanted it to run it only when the “state” is ‘destroy’. As a workaround, we used the provisioner

"local-exec" which has the following condition: when = destroy hence allowing the lambda

function to be triggered solely when the “state” is ‘destroy’.

“States”

In CloudFormation, stacks have specific status codes (“states”) that describe their life cycles.

The following are examples of states that CloudFormation returns:

CREATE_COMPLETE Successful creation of one or more stacks.

CREATE_IN_PROGRESS Ongoing creation of one or more stacks.

In Terraform we don’t have access to these “states” because Terraform directly uses the AWS

API and has its own life cycle mechanism. This presents a challenge since various lambda’s

source code use these “states” to perform some processes. For instance, there is a lambda

function that is triggered in CloudFormation only during the ‘destroy’ state to detach a specific

policy from a resource. This proved to be a slight challenge while we were implementing the

same Lambda function in Terraform. In Terraform we execute the command “terraform apply”

for the first deployment and for any updates done after that. We realized that the prior lambda

function was being triggered each time the command “terraform apply” was executed, and we

wanted this function to be triggered only when the command “terraform destroy” is executed.

In order to address this issue, we added the “RequestType” attribute to the payload that is sent

to our lambda function.

Here is a good example of the usage of “null_resource” resource to trigger the correct lambda

function related to the “custom_resource” based on the deployment “state”:

resource "null_resource" "send_config" {

 depends_on = [null_resource.create_index]

 triggers = {

 region = var.region

 function_name = var.function_name

 service_token = var.custom_resource_arn

 solution_id = var.solution_id

 solution_uuid = var.solution_uuid

 version = var.solution_version

 anonymous_usage = var.anonymous_usage

 cluster_size = var.cluster_size

 }

 provisioner "local-exec" {

 command = <<COMMAND

 aws lambda invoke \

 --cli-binary-format raw-in-base64-out \

 --log-type Tail \

 --region ${self.triggers.region} \

 --function-name ${self.triggers.function_name} \

 --payload '{

 "RequestType": "Create",

 "ResourceProperties": {

 "FunctionName": "SendConfig",

 "ServiceToken": "${self.triggers.service_token}",

 "SolutionId": "${self.triggers.solution_id}",

 "SolutionUuid": "${self.triggers.solution_uuid}",

 "Version": "${self.triggers.version}",

 "AnonymousUsage": "${self.triggers.anonymous_usage}",

 "ClusterSize": "${self.triggers.cluster_size}"

 }

 }' \

 send_config.json

 COMMAND

 }

 provisioner "local-exec" {

 when = destroy

 command = <<COMMAND

 aws lambda invoke \

 --cli-binary-format raw-in-base64-out \

 --log-type Tail \

 --region ${self.triggers.region} \

 --function-name ${self.triggers.function_name} \

 --payload '{

 "RequestType": "Delete",

 "ResourceProperties": {

 "FunctionName": "SendConfig",

 "ServiceToken": "${self.triggers.service_token}",

 "SolutionId": "${self.triggers.solution_id}",

 "SolutionUuid": "${self.triggers.solution_uuid}",

 "Version": "${self.triggers.version}",

 "AnonymousUsage": "${self.triggers.anonymous_usage}",

 "ClusterSize": "${self.triggers.cluster_size}"

 }

 }' \

 delete_send_config.json

 COMMAND

 }

}

Refactoring the Source Code

We wanted to build source codes for the lambda functions. For this, we created a specific

module in Terraform designated for source code building and archiving. We took all the sources

and moved them inside this module. We refactored a bash script that was used to install

dependencies and interpolate strings inside CloudFormation stacks. We removed the following

variables and set them directly in Terraform:

zip packages

Custom resource package

PKG_CUSTOM_RESOURCES=

Lambda layer package(s)

LAYER_AWSSDK=

LAYER_MEDIAINFO=

LAYER_CORE_LIB=

LAYER_IMAGE_PROCESS=

LAYER_FIXITY_LIB=

note: core-lib for custom resource

CORE_LIB_LOCAL_PKG=

modular workflow package(s)

PKG_S3EVENT=

PKG_INGEST=

PKG_ANALYSIS_MONITOR=

PKG_AUDIO_ANALYSIS=

PKG_VIDEO_ANALYSIS=

PKG_IMAGE_ANALYSIS=

PKG_DOCUMENT_ANALYSIS=

PKG_GT_LABELING=

PKG_API=

PKG_ERROR_HANDLER=

PKG_WEBAPP=

The following were the only variables that we kept for source building:
NODEJS_VERSION=$(node --version)

DEPLOY_DIR="$PWD"

SOURCE_DIR="$DEPLOY_DIR"

TEMPLATE_DIST_DIR="$DEPLOY_DIR/global-s3-assets"

BUILD_DIST_DIR="$DEPLOY_DIR/regional-s3-assets"

TMP_DIR=$(mktemp -d)

We used these variables in the following way:

@function build_image_process_layer

@description

build layer packages and copy to deployment/dist folder

function build_image_process_layer() {

 echo "--"

 echo "Building image-process layer package"

 echo "--"

 pushd "$SOURCE_DIR/layers/image-process-lib" || exit

 LAYER_IMAGE_PROCESS=$(grep_zip_name "./package.json")

 npm install

 npm run build

 npm run zip -- "$LAYER_IMAGE_PROCESS" .

 cp -v "./dist/${LAYER_IMAGE_PROCESS}" "$BUILD_DIST_DIR"

 popd

}

After this refactoring, we created a “null_resource” resource to build the sources and archive

them:
resource "null_resource" "build_archives" {

 provisioner "local-exec" {

 command = "pushd ${path.module} && ./build-s3-dist.sh && popd"

 }

}

Once the archives were built, we output the path:
output "aws_sdk_layer" {

 value = "${path.module}/regional-s3-assets/aws-sdk-layer.zip"

 description = "AWS SDK Layer zip file"

 depends_on = [null_resource.build_archives]

}

And we use the outputs from the archiving modules in the other modules that need them:
module "bucket" {

 source = "../bucket_module"

 region = var.region

 account_id = data.aws_caller_identity.current.account_id

 force_destroy = var.s3_force_destroy

 solution_id = local.solution.project.id

 root_stack_name = var.root_stack_name

 solution_uuid = random_uuid.solution_uuid.result

 randomized_name = local.randomized_name

 anonymous_usage = var.anonymous_usage

 bucket_prefix = local.randomized_name

 sns_topic_arn = aws_sns_topic.sns_topic.arn

 iot_host = jsondecode(data.aws_lambda_invocation.iot_url.result)["Endpoint"]

 iot_topic = "${local.solution.project.id}-${var.root_stack_name}/status"

 aws_sdk_layer = aws_lambda_layer_version.aws_sdk_layer.arn

 core_lib_layer = aws_lambda_layer_version.core_lib_layer.arn

 s3_event_archive = module.source.s3_event

}

resource "aws_lambda_function" "on_object_created" {

 function_name = "${var.solution_id}-${var.root_stack_name}-s3event"

 description = "(${var.solution_id}) OnObjectCreated starts an ingest workflow"

 runtime = "nodejs10.x"

 memory_size = 128

 timeout = 900

 handler = local.function.handler.on_object_created

 role = aws_iam_role.execution_role.arn

 filename = var.s3_event_archive

 layers = [

 var.aws_sdk_layer,

 var.core_lib_layer

]

 environment {

 variables = {

 ENV_SOLUTION_ID = var.solution_id

 ENV_STACKNAME = var.root_stack_name

 ENV_SOLUTION_UUID = var.solution_uuid

 ENV_ANONYMOUS_USAGE = var.anonymous_usage

 ENV_SNS_TOPIC_ARN = var.sns_topic_arn

 ENV_IOT_HOST = var.iot_host

 ENV_IOT_TOPIC = var.iot_topic

 }

 }

}

Blockers & Workarounds

During the translation phase, we experienced some difficulties with the CloudFormation stack

because of its use of custom resources. In order to address these issues, we had to develop a

number of workarounds and refactor some lambda functions.

For example, the custom_resource_function handles:

- The IoT detach policy function (used for notifications on the web application)

- The configure workteam function (used for the labeling jobs)

- The create/delete custom vocabulary function (used by Amazon Transcribe)

- The create index function (used to generate the manifest.js file used by the web

application)

We used Terraform’s “null_resources” to execute script files to build and archive sources,

provision lambda functions, and for the web application (see an example below).

resource "null_resource" "build_archives" {

 provisioner "local-exec" {

 command = "pushd ${path.module} && ./build-s3-dist.sh && popd"

 }

}

Redundant lambda functions that were previously used to format strings were also removed

because these lambda functions could be handled by Terraform directly. For example:

- The sanitize functions (that were replaced by variables and regular expressions check)

- The randomize name function (that were replaced by random_uuid Terraform resource)

The “null_resources” resource has also been used to execute certain functions only during the

“apply” state or only during the “destroy” state of Terraform.

For all the resources that were previously created by the ‘Custom Resources’ resource within

CloudFormation, we created equivalents within Terraform. For example, for the user pool

domain of AWS Cognito (which is normally created within the AWS API while using

CloudFormation) we used the AWS Cognito Domain resource on Terraform.

We also discovered an internal bug in the AWS platform that leaves phantom resources. This

makes CloudFormation stacks or Terraform modules impossible to redeploy inside the region

where the phantom resource has been created. AWS is currently working on a fix.

About TrackIt

TrackIt is an Amazon Web Services Advanced Consulting Partner specializing in cloud

management, consulting, and software development solutions based in Venice, CA.

TrackIt specializes in Modern Software Development, DevOps, Infrastructure-As-Code,

Serverless, CI/CD, and Containerization with specialized expertise in Media &

Entertainment workflows, High-Performance Computing environments, and data storage.

TrackIt’s forté is cutting-edge software design with deep expertise in containerization,

serverless architectures, and innovative pipeline development. The TrackIt team can

help you architect, design, build and deploy a customized solution tailored to your exact

requirements.

In addition to providing cloud management, consulting, and modern software

development services, TrackIt also provides an open-source AWS cost management

tool that allows users to optimize their costs and resources on AWS.

https://trackit.io/
https://trackit.io/
https://github.com/trackit/trackit
https://github.com/trackit/trackit

